Фильтр по тематике

Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах

В предыдущей статье была приведена теория расчётов волнового сопротивления линий передач на печатных платах. Здесь мы анонсируем разработанный компанией ЭРЕМЕКС специализированный инструмент для расчёта и покажем точность и корректность его работы. 

Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах

Печатные платы (ПП) широко применяются в электронных устройствах. Именно они являются основным узлом, обеспечивающим связь между различными компонентами и сигнальными линиями. При проектировании ПП необходимо учитывать такой важный параметр, как волновое сопротивление линий передач (ЛП), как одиночных, так и дифференциальных.

Волновое сопротивление ЛП во многом определяет, как сигналы будут распространяться по ПП. Несоответствие волнового сопротивления может привести к помехам, потере сигнала и нестабильной работе всего устройства. Поэтому важно правильно рассчитывать волновое сопротивление ЛП [1].

На рынке существует несколько систем автоматизированного проектирования (САПР), позволяющих рассчитывать волновое сопротивление ЛП на печатных платах. Все эти системы являются импортными.

В настоящее время компания «ЭРЕМЕКС» разрабатывает калькулятор для расчета импеданса как одиночных ЛП, так и дифференциальных. Программа находится на финальной стадии разработки и скоро будет представлена российским специалистам в области проектирования электроники. Современный инженер достаточно консервативен и тяжело меняет выбранные когда-то подходы и инструменты для проектирования. Только объективные доводы, новые возможности, современный и проверенный математический аппарат и высокое качество реализации могут убедить специалиста сменить программное средство.

Данная статья направлена на то, чтобы показать специалистам возможности и точность работы калькулятора от компании «ЭРЕМЕКС». Точность будет оцениваться путём сравнения значений импеданса, полученных с помощью калькулятора и в других подобных инструментах, а также с реальными измерениями волнового сопротивления ЛП на тестовой плате.

Исследование выполним как для одиночных ЛП, так и для дифференциальных, структуры которых наиболее часто используются инженерами. Расчёты произведём калькуляторами, встроенными в следующие САПР: Altium Designer (Altium), Xpedition PCB (Siemens), Si9000 (Polar) [2]. Так же, как отмечалось выше, для большей убедительности сравним теоретические расчёты с реальными значениями волнового сопротивления на ПП. Для этого были изготовлены тестовые купоны ЛП на заводе Резонит и измерены методом динамической рефлектометрии (Time Domain Reflectometry, TDR) по стандарту IPC-2141A [3].

ЛП в виде тестовых купонов рассчитывались на основе стандартного стека 6-слойной платы толщиной 1 мм и была изготовлена на заводе «Резонит» с материалом FR4 (TG150) (рис. 1, 2) [4].


После изготовления ПП был получен отчёт от завода-изготовителя, в котором отображены результаты измерения волнового сопротивления для каждой ЛП (рис. 3). В отчёте подсчитаны все линии, кроме копланарных ЛП без опорного слоя в соседних слоях.

На следующем шаге все результаты исследований были сведены в единую табл. 1. Метка «X» значит, что данная ЛП не может быть посчитана в выбранной САПР или с помощью выбранного метода.

На рис. 4 представлен сводный график результатов расчётов для волнового сопротивления.

Из представленного выше видно, что результаты вычислений в разработанном компанией «ЭРЕМЕКС» калькуляторе практически не отличаются от значений, полученных в других САПР. Минимальное отклонение не окажет значительного влияния на качество сигнала. Если сравнивать с результатами измерений в натуральном эксперименте, то следует отметить, что отклонение больше, но не выходит за установленные границы в 10 процентов. Значение импеданса на реальной плате во многом зависит от технологических возможностей производства и качества материалов. Изготовление данной тестовой платы на другом заводе (даже с использованием другой партии материалов для производства) приведёт к получению иных значений волнового сопротивления.

Таким образом, калькулятор импеданса от компании «ЭРЕМЕКС» обеспечивает высокую точность расчётов и может стать надёжным и качественным аналогом импортного производства.

Литература

  1. Кечиев Л.Н. Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017. 13 с.
  2. URL: https://en.wikipedia.org/wiki/List_of_EDA_companies.
  3. IPC-2141A Design Guide for High-Speed Controlled Impedance Circuit Boards.
  4. URL: https://www.rezonit.ru/.

Комментарии
Рекомендуем
Переключатели ёлочных гирлянд  на основе ИМС стандартной логики электроника

Переключатели ёлочных гирлянд на основе ИМС стандартной логики

Светодинамические устройства (СДУ) для управления гирляндами обычно выполняются на основе микроконтроллера, что требует применения программатора и написания управляющей программы. В то же время аналогичное устройство можно выполнить всего на нескольких ИМС стандартной логики. В таком случае нет необходимости в применении программатора для прошивки микроконтроллера. В данной статье рассмотрены три автомата с фиксированными алгоритмами для управления четырьмя и восемью гирляндами. В качестве светоизлучающих элементов используются сверхъяркие светодиоды. Их высокая надёжность и малое энергопотребление обеспечивают работоспособность в течение длительного времени и высокую экономичность при высокой яркости свечения.
25.12.2024 СЭ №1/2025 142 0

  Подписывайтесь на наш канал в Telegram и читайте новости раньше всех! Подписаться