Фильтр по тематике

Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах

В предыдущей статье была приведена теория расчётов волнового сопротивления линий передач на печатных платах. Здесь мы анонсируем разработанный компанией ЭРЕМЕКС специализированный инструмент для расчёта и покажем точность и корректность его работы. 

Печатные платы (ПП) широко применяются в электронных устройствах. Именно они являются основным узлом, обеспечивающим связь между различными компонентами и сигнальными линиями. При проектировании ПП необходимо учитывать такой важный параметр, как волновое сопротивление линий передач (ЛП), как одиночных, так и дифференциальных.

Волновое сопротивление ЛП во многом определяет, как сигналы будут распространяться по ПП. Несоответствие волнового сопротивления может привести к помехам, потере сигнала и нестабильной работе всего устройства. Поэтому важно правильно рассчитывать волновое сопротивление ЛП [1].

На рынке существует несколько систем автоматизированного проектирования (САПР), позволяющих рассчитывать волновое сопротивление ЛП на печатных платах. Все эти системы являются импортными.

В настоящее время компания «ЭРЕМЕКС» разрабатывает калькулятор для расчета импеданса как одиночных ЛП, так и дифференциальных. Программа находится на финальной стадии разработки и скоро будет представлена российским специалистам в области проектирования электроники. Современный инженер достаточно консервативен и тяжело меняет выбранные когда-то подходы и инструменты для проектирования. Только объективные доводы, новые возможности, современный и проверенный математический аппарат и высокое качество реализации могут убедить специалиста сменить программное средство.

Данная статья направлена на то, чтобы показать специалистам возможности и точность работы калькулятора от компании «ЭРЕМЕКС». Точность будет оцениваться путём сравнения значений импеданса, полученных с помощью калькулятора и в других подобных инструментах, а также с реальными измерениями волнового сопротивления ЛП на тестовой плате.

Исследование выполним как для одиночных ЛП, так и для дифференциальных, структуры которых наиболее часто используются инженерами. Расчёты произведём калькуляторами, встроенными в следующие САПР: Altium Designer (Altium), Xpedition PCB (Siemens), Si9000 (Polar) [2]. Так же, как отмечалось выше, для большей убедительности сравним теоретические расчёты с реальными значениями волнового сопротивления на ПП. Для этого были изготовлены тестовые купоны ЛП на заводе Резонит и измерены методом динамической рефлектометрии (Time Domain Reflectometry, TDR) по стандарту IPC-2141A [3].

ЛП в виде тестовых купонов рассчитывались на основе стандартного стека 6-слойной платы толщиной 1 мм и была изготовлена на заводе «Резонит» с материалом FR4 (TG150) (рис. 1, 2) [4].


После изготовления ПП был получен отчёт от завода-изготовителя, в котором отображены результаты измерения волнового сопротивления для каждой ЛП (рис. 3). В отчёте подсчитаны все линии, кроме копланарных ЛП без опорного слоя в соседних слоях.

На следующем шаге все результаты исследований были сведены в единую табл. 1. Метка «X» значит, что данная ЛП не может быть посчитана в выбранной САПР или с помощью выбранного метода.

На рис. 4 представлен сводный график результатов расчётов для волнового сопротивления.

Из представленного выше видно, что результаты вычислений в разработанном компанией «ЭРЕМЕКС» калькуляторе практически не отличаются от значений, полученных в других САПР. Минимальное отклонение не окажет значительного влияния на качество сигнала. Если сравнивать с результатами измерений в натуральном эксперименте, то следует отметить, что отклонение больше, но не выходит за установленные границы в 10 процентов. Значение импеданса на реальной плате во многом зависит от технологических возможностей производства и качества материалов. Изготовление данной тестовой платы на другом заводе (даже с использованием другой партии материалов для производства) приведёт к получению иных значений волнового сопротивления.

Таким образом, калькулятор импеданса от компании «ЭРЕМЕКС» обеспечивает высокую точность расчётов и может стать надёжным и качественным аналогом импортного производства.

Литература

  1. Кечиев Л.Н. Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017. 13 с.
  2. URL: https://en.wikipedia.org/wiki/List_of_EDA_companies.
  3. IPC-2141A Design Guide for High-Speed Controlled Impedance Circuit Boards.
  4. URL: https://www.rezonit.ru/.

Комментарии
Рекомендуем
Электронные датчики и радары  в системе беспроводной связи ОТА, LOP и E-peas электроника

Электронные датчики и радары в системе беспроводной связи ОТА, LOP и E-peas

В будущем разработчиков РЭА ожидает эра «одноразовых» устройств: «установил и забыл» – надёжные, устойчивые к внешним воздействиям среды, но не предназначенные для ремонта. Одна из важных решаемых задач – сочетание сбора энергии из среды, её преобразование в электрическую и применение датчиков и микроконтроллеров с крайне низким энергопотреблением. В сочетании с технологиями E-peas (Electronic portable energy autonomous systems – автономные портативные электронные системы), LOP (с низким энергопотреблением) и решениями NXP возникают перспективы датчиков положения, давления и измерения сопутствующих величин от OEM-производителей. С аппаратными настройками и масштабируемостью производительности РЭА в формате процессоров S32R с исключением ошибок в передаче данных аналогового и смешанного сигнала беспроводным способом на небольшие расстояния. В статье представлены примеры системных решений для организации и управления питания датчиков РЭА, задействованных в беспроводной передаче данных, сетевых технологиях и транспортной технике с беспроводной сетью ОТА (Over-the-air – по воздуху).
15.04.2024 СЭ №4/2024 378 0

ООО «ПРОСОФТ» 7724020910 2SDnjdbfYK3
ООО «ПРОСОФТ» 7724020910 2SDnjdbfYK3