Фильтр по тематике

Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах

В предыдущей статье была приведена теория расчётов волнового сопротивления линий передач на печатных платах. Здесь мы анонсируем разработанный компанией ЭРЕМЕКС специализированный инструмент для расчёта и покажем точность и корректность его работы. 

20.11.2023 690 0
Сравнение результатов расчётов волнового сопротивления линий передач на печатных платах

Печатные платы (ПП) широко применяются в электронных устройствах. Именно они являются основным узлом, обеспечивающим связь между различными компонентами и сигнальными линиями. При проектировании ПП необходимо учитывать такой важный параметр, как волновое сопротивление линий передач (ЛП), как одиночных, так и дифференциальных.

Волновое сопротивление ЛП во многом определяет, как сигналы будут распространяться по ПП. Несоответствие волнового сопротивления может привести к помехам, потере сигнала и нестабильной работе всего устройства. Поэтому важно правильно рассчитывать волновое сопротивление ЛП [1].

На рынке существует несколько систем автоматизированного проектирования (САПР), позволяющих рассчитывать волновое сопротивление ЛП на печатных платах. Все эти системы являются импортными.

В настоящее время компания «ЭРЕМЕКС» разрабатывает калькулятор для расчета импеданса как одиночных ЛП, так и дифференциальных. Программа находится на финальной стадии разработки и скоро будет представлена российским специалистам в области проектирования электроники. Современный инженер достаточно консервативен и тяжело меняет выбранные когда-то подходы и инструменты для проектирования. Только объективные доводы, новые возможности, современный и проверенный математический аппарат и высокое качество реализации могут убедить специалиста сменить программное средство.

Данная статья направлена на то, чтобы показать специалистам возможности и точность работы калькулятора от компании «ЭРЕМЕКС». Точность будет оцениваться путём сравнения значений импеданса, полученных с помощью калькулятора и в других подобных инструментах, а также с реальными измерениями волнового сопротивления ЛП на тестовой плате.

Исследование выполним как для одиночных ЛП, так и для дифференциальных, структуры которых наиболее часто используются инженерами. Расчёты произведём калькуляторами, встроенными в следующие САПР: Altium Designer (Altium), Xpedition PCB (Siemens), Si9000 (Polar) [2]. Так же, как отмечалось выше, для большей убедительности сравним теоретические расчёты с реальными значениями волнового сопротивления на ПП. Для этого были изготовлены тестовые купоны ЛП на заводе Резонит и измерены методом динамической рефлектометрии (Time Domain Reflectometry, TDR) по стандарту IPC-2141A [3].

ЛП в виде тестовых купонов рассчитывались на основе стандартного стека 6-слойной платы толщиной 1 мм и была изготовлена на заводе «Резонит» с материалом FR4 (TG150) (рис. 1, 2) [4].


После изготовления ПП был получен отчёт от завода-изготовителя, в котором отображены результаты измерения волнового сопротивления для каждой ЛП (рис. 3). В отчёте подсчитаны все линии, кроме копланарных ЛП без опорного слоя в соседних слоях.

На следующем шаге все результаты исследований были сведены в единую табл. 1. Метка «X» значит, что данная ЛП не может быть посчитана в выбранной САПР или с помощью выбранного метода.

На рис. 4 представлен сводный график результатов расчётов для волнового сопротивления.

Из представленного выше видно, что результаты вычислений в разработанном компанией «ЭРЕМЕКС» калькуляторе практически не отличаются от значений, полученных в других САПР. Минимальное отклонение не окажет значительного влияния на качество сигнала. Если сравнивать с результатами измерений в натуральном эксперименте, то следует отметить, что отклонение больше, но не выходит за установленные границы в 10 процентов. Значение импеданса на реальной плате во многом зависит от технологических возможностей производства и качества материалов. Изготовление данной тестовой платы на другом заводе (даже с использованием другой партии материалов для производства) приведёт к получению иных значений волнового сопротивления.

Таким образом, калькулятор импеданса от компании «ЭРЕМЕКС» обеспечивает высокую точность расчётов и может стать надёжным и качественным аналогом импортного производства.

Литература

  1. Кечиев Л.Н. Печатные платы и узлы гигабитной электроники. М.: Грифон, 2017. 13 с.
  2. URL: https://en.wikipedia.org/wiki/List_of_EDA_companies.
  3. IPC-2141A Design Guide for High-Speed Controlled Impedance Circuit Boards.
  4. URL: https://www.rezonit.ru/.

Если вам понравился материал, кликните значок - вы поможете нам узнать, каким статьям и новостям следует отдавать предпочтение. Если вы хотите обсудить материал - не стесняйтесь оставлять свои комментарии : возможно, они будут полезны другим нашим читателям!

20.11.2023 690 0
Комментарии
Рекомендуем
Современная электроника и искусственный интеллект Часть 1. Что такое искусственный интеллект,  и что он может

Современная электроника и искусственный интеллект Часть 1. Что такое искусственный интеллект, и что он может

Проявления искусственного интеллекта (ИИ) мы замечаем всё чаще как в повседневной жизни, так и в самых различных областях науки, техники, медицины, транспорта и т.д. Общая цель нескольких частей этой статьи заключается в том, чтобы попытаться объяснить, с одной стороны, какую роль играет современная электроника в ИИ, а с другой – как развитие современной электроники влияет на прогресс ИИ. В первой части статьи простыми словами рассказано, что такое ИИ, и как он работает. На основе анализа статей ведущих экспертов в области искусственного интеллекта автор постарался выделить несколько наиболее крупных фирм, продукция которых представляется наиболее перспективной. В первой части приведён краткий обзор больших языковых моделей (LLM) этих фирм. В следующей части статьи планируется рассмотреть специализированные модели искусственного интеллекта.
01.04.2025 144 0
Инновационные токопроводящие плёнки с элементами TFT как способ зарядки от теплового и вибрационного датчика QOT для носимых электронных устройств

Инновационные токопроводящие плёнки с элементами TFT как способ зарядки от теплового и вибрационного датчика QOT для носимых электронных устройств

Учёные многих стран мира работают над преобразованием энергии тепла в электрический ток с конца XIX века, когда контроль над электрическим током ощущался таким же прогрессом, как сегодня Интернет, цифровизация и ИИ. Гибкая РЭА применяется в различных областях, таких как панельные дисплеи, электронные датчики, шлейфы и устройства накопления данных, что стимулирует значительный интерес к новым материалам и технологиям их обработки. Сегодня за неполных два века можно говорить о том, что разработчикам удалось создать ультратонкую гибкую плёнку для подзарядки электронных устройств небольшой мощности на основе TFT, в частности, для подзарядки аккумуляторов смартфонов непосредственно от тепла тела человека. Такие электронные датчики пока размещают на кожном покрове, а в ближайшем будущем будут встраивать в умную одежду человека. В статье рассматриваются инновации в тонкоплёночных транзисторах (TFT), которые являются важнейшими компонентами, позволяющими создавать электронные схемы на гибких подложках, а разработка элементов TFT с высокой производительностью и с механической гибкостью для РЭА – предмет перспективных исследований.
01.04.2025 111 0
Электронные системы NENS c интерфейсом человек-машина с трибоэлектрическими датчиками T-TENG

Электронные системы NENS c интерфейсом человек-машина с трибоэлектрическими датчиками T-TENG

Благодаря недавним достижениям в области беспроводных сетей 5G и Интернета вещей (IoT) электронные носимые устройства активно взаимодействуют между собой с высокой скоростью обмена данными для обеспечения одновременной передачи информации о человеческом организме. Гибридные интегрированные гибкие электронные системы (HIFES), беспроводные сенсорные сети (WSN) позиционируются как ключевая технология для анализа информации, связанной с идентификацией личности, здравоохранением, применением интерфейса человек-машина (HMI) и ежесекундным мониторингом человеческой активности (практической жизнедеятельности). Так, РЭА носимого форм-фактора в последние десятилетия отличаются гибкостью и безопасностью материалов, малым весом и автономным питанием, не требующим подзарядки или замены источника питания в течение длительного времени. В статье рассматриваются новые разработки и особенности электронных устройств с трибоэлектрическими датчиками (T-TENG) и перспективы их совершенствования.
01.04.2025 118 0

ООО «БД СЕНСОРС РУС»  ИНН 7718542411 erid = 2SDnjc4CpRr
ООО «БД СЕНСОРС РУС»  ИНН 7718542411 erid = 2SDnjcfnXC8
  Подписывайтесь на наш канал в Telegram и читайте новости раньше всех! Подписаться