Данная работа является продолжением цикла работ, посвящённого тематике применения программируемых аналоговых (AN221E04) и цифровых (PIC18F452) интегральных микросхем для разработки нестандартной геофизической аппаратуры [1, 2]. В работе представлены экспериментальные данные АЧХ поля атмосфериков, зарегистрированного одновременно на двух разнесённых по широте обсерваториях Полярного геофизического института РАН [Ловозеро (67,97°N, 35,02°E) и Баренцбург (78,08°N, 14,22°E)] во время вспышек на Солнце класса B, M (09.11.2021). Используемая приёмно-регистрирующая аппаратура была разработана в ПГИ на основе программируемых аналоговых (AN221E04) и цифровых (PIC18F452) интегральных микросхем, что дало возможность получить высокую точность обработки аналоговых сигналов (не хуже 1%). Это позволило сопоставлять результаты регистрации, выполненные в разных точках наблюдений, с численным моделированием процессов в нижней ионосфере Земли. Результаты первичной обработки экспериментальных данных показали, что вариации АЧХ поля атмосфериков могут стать дополнительным индикатором состояния солнечной активности и солнечных вспышек.
Изучение физики атмосферы остается актуальным и в наши дни, поскольку всегда имеется потребность в корректировке физической модели ионосферы с использованием оперативно получаемых экспериментальных данных. Любая модель ионосферы не может охватить и предсказать всех факторов, влияющих на состояние плазмы, вызванных вспышками на Солнце.
Интерес к данному исследованию объясняется тем, что изменения интенсивности солнечного ветра, связанные со вспышками на Солнце, являются главной причиной появления основных геофизических явлений. Три вида солнечного излучения (электромагнитное, протоны, низкоэнергичная плазма) особенно влияют на процессы в верхней атмосфере и приводят к возникновению различного вида геофизических явлений (внезапные ионосферные возмущения, магнитные бури, полярные сияния). Каждый из этих факторов по-разному воздействует на околоземное пространство (магнитосферу, ионосферу).
Причём полоса импульсного электромагнитного излучения простирается в широком диапазоне длин волн: от жёсткого рентгеновского излучения (10–9 см ) до километровых радиоволн (106 см). Время распространения указанных видов солнечного излучения до Земли соответственно составляет: 8,3 мин, несколько часов, 1–2 суток [3].
Состояние активности Солнца определялось по архивным данным X-Ray Flux геостационарного спутника GOES (Geostationary Operational Environmental Satellite) [4, 5]. Рентгеновские данные спутника GOES являются хорошим индикатором того, что солнечная буря двигается по направлению к Земле.
Приведена синхронная запись АЧХ поля атмосфериков, зарегистрированного на двух разнесённых по широте авроральных обсерваториях ПГИ: Ловозеро (Мурманская обл., 67,97°N/ 35,02°E) и Баренцбург (арх. Шпицберген, 78,08°N/ 14,22°E ) во время солнечных вспышек мощностью класса B и M [4].
Это дало возможность путём включения подпрограммы «обнуления» уменьшить погрешность измерения амплитуды, вызванной эффектом «звона» фильтра при действии импульсного сигнала. Режим «обнуления» включается после записи каждой спектральной составляющей п. а.
Структура построения аппаратуры позволяет легко тиражировать её с идентичными параметрами и тем самым имеется возможность для организации сети геофизических наблюдений.
В связи с тем, что задержка реакции ионосферы на солнечную вспышку зависит от фактора воздействия и составляет от несколько минут (электромагнитный импульс) до трёх суток (корональный выброс), будут рассмотрены АХЧ поля атмосфериков в различных временны́х масштабах.
На рис. 2, 3 представлена 4-суточная (09.11.2021–12.11.2021) синхронная запись X-Ray Flux (GOES) и АЧХ поля атмосфериков (п. а.) раздельно по компонентам Hx (рис. 1), Hy (рис. 2), одновременно зарегистрированных на двух обсерваториях в период солнечных вспышек мощностью класса B [(02:00) 09.11.2021] и M [(15:20) 09.11.2021].
В связи с широким динамическим диапазоном спектральных составляющих сигнала п. а. в полосе частот ∆F = (0,6–3,6) кГц и для лучшей наглядности вариации амплитуды каналов на графиках АЧХ представлены в относительных единицах. Белые полосы на сонограммах (рис. 1в, 2б) означают отсутствие данных в представленный момент времени.
На рис. 4 представлена суточная (09.11.2021) синхронная запись GOES X-Ray Flux и АЧХ компонентов Hx поля атмосфериков, одновременно зарегистрированных на двух обсерваториях ПГИ в период солнечных вспышек мощностью класса B [(02:00) 09.11] и M [(15:20) 09.11] 2021 г.
Анализ представленных характеристик показал широтную зависимость АЧХ поля атмосфериков при действии солнечной вспышки, что подтверждает сложную конфигурацию магнитного поля околоземного космического пространства (области как замкнутых, так и разомкнутых силовых линий). Наличие области полярного каспа (широты 75–80°), где интенсивность геомагнитного поля очень низкая, подтверждено регистрацией возмущения п. а. только на обс. ПГИ Баренцбург (рис. 3б), как результата воздействия солнечной вспышки класса B (6×10-7 W∕m2).
Отсутствие временно́й задержки между солнечной вспышкой и возмущением п. а. в виде девиации критической частоты волновода Земля-ионосфера [(909–1500) Гц], а также то, что область наблюдения находилась в тени Солнца, даёт основание считать, что фактором воздействия солнечного излучения является электромагнитный поток.
Результаты первичной обработки экспериментальных данных показали, что вариации АЧХ поля атмосфериков могут стать дополнительным индикатором состояния солнечной активности и солнечных вспышек.
Биометрические системы, информационные киоски (БИК), турникеты и шлюзы с АСО. Обзор оборудования, компонентов и особенностей установки
Повсеместно биометрическую идентификацию рассматривают как перспективный инструмент для быстрых и безопасных операций почти универсального (в самых различных сферах) применения. Несколько лет назад появились биометрические информационные киоски, турникеты и шлюзы. Эти модели постоянно совершенствуются. О новинках, связанных с расширением функционала и защиты современного оборудования, ставших возможными профессиональными усилиями разработчиков РЭА и производителей оборудования, предлагаем ознакомиться в нашем обзоре. Основной акцент в формате импортозамещения современной электроники сделан на серийные модели отечественных производителей. 04.09.2024 СЭ №6/2024 320 0 0Аккумулятор 18650 для радиоканала
Аккумуляторы 18650 имеют рабочие напряжения 3…4,2 В, что не позволяет использовать их непосредственно в схемах с 5-вольтовым питанием. В статье предложено схемное решение формирования требуемого значения напряжения методом накопления импульсов самоиндукции от дросселя. С целью уменьшения потребления энергии формируется режим «сна» для используемого микроконтроллера 12F675 и радиомодуля HC12 в комбинации с отключением общего провода других потребителей энергии электронным ключом на полевом транзисторе. Приведена методика расчёта длительности работы на аккумуляторе в режиме «измерение-сон». 02.09.2024 СЭ №6/2024 227 0 0Усовершенствованный двухканальный индикатор уровня звука на базе цветного 1,3” TFT дисплея и микроконтроллера EFM8LB10F16
В статье приведены принципиальная схема, разводка и внешний вид платы, а также программные средства двухканального индикатора уровня звука на базе цветного 1,3″ TFT-дисплея с разрешением 240×240 пикселей (с контроллером ST7789), сопряжённого с микроконтроллером EFM8LB10F16 по параллельному интерфейсу. Показаны результаты работы устройства в составе УМЗЧ. 02.09.2024 СЭ №6/2024 223 0 0Сверхпроводимость при высоких температурах реальность и фальсификации. Часть 2
Одним из последних ярких примеров несостоявшегося открытия сверхпроводимости при нормальных условиях стала история с веществом LK-99, названным так по первым буквам фамилий руководителей проекта Сукбэ Ли и Джи-Хун Кима. Группа южнокорейских учёных летом 2023 года разместила на сайте arXiv подробные результаты своих исследований, подтверждающих сверхпроводимость при температуре 127°С и атмосферном давлении синтезированного ими вещества LK-99. Детальное описание экспериментов не вызывало сомнений у мировой научной общественности. Однако попытки объяснить эти результаты поставили в тупик многих экспертов в области сверхпроводимости. Эта информация привела к взрыву в сетях комментариев и вопросов к авторам. Десятки лабораторий во всём мире попытались повторить эксперимент группы Ли Сукбэ. Однако никому не удалось получить точно такие же результаты, какие были опубликованы в южнокорейских препринтах. Только совместные усилия лучших специалистов в области сверхпроводимости позволили установить, что LK-99 не является сверхпроводником. При этом резкий скачок удельного сопротивления объясняется фазовым переходом кристаллической структуры сульфида серы, содержащегося в виде примеси в образцах LK-99. 04.09.2024 СЭ №6/2024 248 0 0