В статье рассмотрены характеристики обнаружения последетекторной адаптивной межпериодной обработки сигналов в шуме и коррелированной помехе. Определены параметры предпороговой статистики. Установлено, что когерентность сигнала несущественно влияет на характеристики обнаружения.
Задача обнаружения сигнала в коррелированной помехе решается в два этапа: «обеление» помехи и затем обнаружение сигнала на фоне белого шума. «Обеление» помехи осуществляется цифровым режекторным фильтром, весовые коэффициенты которого определяются обратной корреляционной матрицей помехи. В реальных условиях корреляционная матрица помехи неизвестна, поэтому производится адаптивная обработка, предполагающая оценку корреляционной матрицы помехи и её обращение [1].
Практическая реализация такой обработки затруднительна, особенно при обработке комплексной входной выборки помехи и сигнала.
Последетекторная межпериодная обработка (МПО) использует выходные сигналы амплитудного детектора, и вычислительные операции производятся с действительными числами, что упрощает реализацию обработки. Структура МПО представляет собой адаптивный матричный обеляющий фильтр (ОФ) и блок скалярного перемножения выходных сигналов фильтра [2].
Целью статьи является определение характеристик обнаружения последетекторной МПО при различных моделях сигнала и помехи.
Сигнал и помеха полагаются взаимно-независимыми гауссовыми (до детектора) случайными векторами размерности М с корреляционной матрицей (КМ) межпериодных флуктуаций импульсов пачки М:
Для определения D при заданной величине F производится вычисление закона распределения выходного процесса МПО, который определяется выражением:
где x – M-мерный вектор пачки входного процесса ОФ, H – матричная импульсная характеристика (МИХ) ОФ, размерности M × M.
МИХ H определяется из соотношения:
и представляет собой «корень» матрицы ˆψΧ, обратной КМ ˆΦΧ.
Вычисление ˆΦΧ производится путём расчёта КМ-процесса после амплитудного детектора в соответствии с формулой [3]:
где σ2ξ, rξ (τ)– параметры корреляционной функции процесса на входе амплитудного детектора.
Значения rΧ(τ), взятые при отсутствии сигнала, являются элементами обучающей матрицы ˆΦΧ, определяющей МИХ H.
Обучающая матрица ˆΦΧ размерности M × M, полученная из Φ′N в соответствии с (6) имеет вид:
КМ шума на выходе ОФ:
так как ˆΦN=H-1×(H-1)T.
Выход МПО есть сумма квадратов выходных сигналов ОФ. В соответствии с (8) эти сигналы представляют М взаимонезависимых гауссовых величин с нулевым математическим ожиданием и одинаковой единичной дисперсией, и плотность вероятности выходного шума МПО подчиняется χ2-распределению [3]:
Где Г( ) – гамма-функция.
Вероятность ложной тревоги F равна:
где T – пороговый уровень.
Из (10) следует, что F зависит только от М и Т.
Для смеси сигнал + шум:
где a=σS2/σN2 – отношение сигнал / шум, отсюда следует, что КМ смеси сигнал + шум равна:
таким образом, КМ ФS+N отличается от ˆΦN только величиной дисперсии, увеличенной в (1 + a).
КМ смеси сигнал + шум на выходе ОФ равна:
и, следовательно, выходные сигналы ОФ также являются М взаимонезависимыми гауссовыми случайными величинами с нулевым математическим ожиданием и одинаковой дисперсией (1 + а), поэтому плотность вероятности выходного сигнала МПО имеет вид [3]:
Вероятность правильного обнаружения D равна:
Характеристики обнаружения, рассчитанные в соответствии с (13), приведены на рисунке 1.
Обучающая матрица ˆΦN остаётся без изменений и имеет вид (7), и, следовательно, плотность вероятности выходного шума МПО определяется выражением (9).
Для смеси сигнал + шум:
В результате преобразования (6) матрица ФS+N содержит значения π/2 в главной диагонали, и значения (a/(a+1))arcsin(a/(a+1))+√1−(a/(a+1))2 для недиагональных элементов. Таким образом, ФS+N существенно отличается от ФN и плотность вероятности смеси сигнал + шум не может быть описана выражением (12).
Аналитическое определение плотности вероятности смеси сигнал + шум на выходе МПО не представляется возможным, и выражения для pS+N(x,M) получены по результатам имитационного моделирования. Обработка результатов моделирования показывает, что плотность вероятности процесса на выходе МПО с высокой степенью точности аппроксимируется логнормальным распределением вида
с параметрами µ и σ, зависящими от М и а, приведёнными на рисунке 2.
Вероятность ложной тревоги F и пороговый уровень T определяются выражением (10), а вероятность правильного обнаружения D определяется выражением
где
– параметры распределения при а ≠ 0 из рисунка 2.
Характеристики обнаружения, рассчитанные в соответствии с (16), приведены на рисунке 3.
Обучающая матрица ˆФS+N определяется преобразованием (6) КМ ˆФ′S+N суммы шума с помехой:
где η=σ2P/σ2N – отношение помеха / шум, ρij – коэффициенты экспоненциальной корреляционной функции.
В результате матрица ˆФS+N имеет значения π/2 в главной диагонали и значения dij для недиагональных элементов
Так как при отсутствии сигнала КМ входного процесса МПО равна КМ ˆФS+N, то КМ выходного процесса МПО равна {IM} и закон распределения его имеет вид (9).
В работе [4] показано, что при взаимодействии сигнала с коррелированной помехой когерентность пачки не имеет значения.
КМ смеси сигнал + помеха + шум при σ2P >>σ2S может быть представлена в виде [5]:
где Ω – разность допплеровских частот помехи и сигнала, Т – период зондирования.
В результате преобразования (6) КМ ФS+P+N имеет значения π/2 в главной диагонали и значения cij для недиагональных элементов матрицы:
Результаты моделирования показывают, что и в этом случае плотность вероятности процесса на выходе МПО соответствует логнормальному распределению (15) с параметрами µ и β, зависящими от М, а, η, ΩT, ρij, γ (ΩT = π; а = 10 дБ; γ=σ2P/σ2N; ρij = 0,99i–j; M = 3, 5, 8) и приведёнными на рисунке 4.
Вероятность ложной тревоги F и пороговый уровень T также определяются выражением (10), а вероятность правильного обнаружения D равна:
где µγ и βγ – параметры распределения (15) при γ ≠ 0 из рисунка 4.
Характеристики обнаружения, рассчитанные в соответствии с (20) приведены на рисунке 5.
Последетекторная МПО с обеляющим фильтром обеспечивает обнаружение сигнала в коррелированной помехе.
Отличительными особенностями последетекторной МПО является стабильный уровень ложных тревог, не зависящий от параметров распределения шума и помехи, и некритичность к когерентности сигнала.
Последнее обстоятельство особенно важно для радиолокационных станций с некогерентными сигналами.
Биометрические системы, информационные киоски (БИК), турникеты и шлюзы с АСО. Обзор оборудования, компонентов и особенностей установки
Повсеместно биометрическую идентификацию рассматривают как перспективный инструмент для быстрых и безопасных операций почти универсального (в самых различных сферах) применения. Несколько лет назад появились биометрические информационные киоски, турникеты и шлюзы. Эти модели постоянно совершенствуются. О новинках, связанных с расширением функционала и защиты современного оборудования, ставших возможными профессиональными усилиями разработчиков РЭА и производителей оборудования, предлагаем ознакомиться в нашем обзоре. Основной акцент в формате импортозамещения современной электроники сделан на серийные модели отечественных производителей. 04.09.2024 СЭ №6/2024 320 0 0Аккумулятор 18650 для радиоканала
Аккумуляторы 18650 имеют рабочие напряжения 3…4,2 В, что не позволяет использовать их непосредственно в схемах с 5-вольтовым питанием. В статье предложено схемное решение формирования требуемого значения напряжения методом накопления импульсов самоиндукции от дросселя. С целью уменьшения потребления энергии формируется режим «сна» для используемого микроконтроллера 12F675 и радиомодуля HC12 в комбинации с отключением общего провода других потребителей энергии электронным ключом на полевом транзисторе. Приведена методика расчёта длительности работы на аккумуляторе в режиме «измерение-сон». 02.09.2024 СЭ №6/2024 227 0 0Усовершенствованный двухканальный индикатор уровня звука на базе цветного 1,3” TFT дисплея и микроконтроллера EFM8LB10F16
В статье приведены принципиальная схема, разводка и внешний вид платы, а также программные средства двухканального индикатора уровня звука на базе цветного 1,3″ TFT-дисплея с разрешением 240×240 пикселей (с контроллером ST7789), сопряжённого с микроконтроллером EFM8LB10F16 по параллельному интерфейсу. Показаны результаты работы устройства в составе УМЗЧ. 02.09.2024 СЭ №6/2024 223 0 0Сверхпроводимость при высоких температурах реальность и фальсификации. Часть 2
Одним из последних ярких примеров несостоявшегося открытия сверхпроводимости при нормальных условиях стала история с веществом LK-99, названным так по первым буквам фамилий руководителей проекта Сукбэ Ли и Джи-Хун Кима. Группа южнокорейских учёных летом 2023 года разместила на сайте arXiv подробные результаты своих исследований, подтверждающих сверхпроводимость при температуре 127°С и атмосферном давлении синтезированного ими вещества LK-99. Детальное описание экспериментов не вызывало сомнений у мировой научной общественности. Однако попытки объяснить эти результаты поставили в тупик многих экспертов в области сверхпроводимости. Эта информация привела к взрыву в сетях комментариев и вопросов к авторам. Десятки лабораторий во всём мире попытались повторить эксперимент группы Ли Сукбэ. Однако никому не удалось получить точно такие же результаты, какие были опубликованы в южнокорейских препринтах. Только совместные усилия лучших специалистов в области сверхпроводимости позволили установить, что LK-99 не является сверхпроводником. При этом резкий скачок удельного сопротивления объясняется фазовым переходом кристаллической структуры сульфида серы, содержащегося в виде примеси в образцах LK-99. 04.09.2024 СЭ №6/2024 248 0 0