Современная электроника №8/2025
СТРАНИЦЫ ИСТОРИИ 17 WWW.CTA.RU СОВРЕМЕННАЯ ЭЛЕКТРОНИКА • № 8 / 2025 14. Jingjie Zhou et.al . High-Performance Thin-Film Lithium Niobate Mach– Zehnder Modulator on 8-inch Silicon SubstratesIEEE Photonics Technology Letters. 2024. URL: https://ieeexplore.ieee.org/ document/10613783. 15. Holzgrafe J. et al. Relaxation of the electro-optic response in thin-film lithium niobate modulators. Optics Expre 2024 Jan 29;32(3):3619-3631. URL: https://pubmed.ncbi.nlm.nih . gov/38297579/. 16. HyperLight Launches 110GHz Intensity Modulator with Record low Vπ Leveraging Its TFLN Chiplet™ Platform. CAMBRIDGE, Mass. BUSINESS WIRE, Mar 25, 2025. URL: https://www.businesswire . com/news/home/20250325461709/ en/HyperLight-Launches-110GHz- Intensity-Modulator-with-Record- low-V-Leveraging-Its-TFLN-Chiplet- Platform. 17. TFLN ChipletTM RELIABLE PERFORMANCE AT SCALEURL. URL: https://hyperlightcorp.com/. 18. Thorlabs pioneers photonics technologies to accelerate scientific research and product development. URL: https://www.thorlabs.com/. 19. Mengyue Xu et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nature Communications volume 11, Article number: 3911 (2020). URL: https://www.nature.com/articles/ s41467-020-17806-0. 20. Valdez, Forrest et al. 110 GHz, 110 mW hybrid silicon-lithium niobate Mach-Zehnder modulator. Sci Rep 12, 18611 (2022). URL: https:// www.nature.com/articles/s41598-022- 23403-6. 21. Valdez, Forrest et al. Buried- Electrode Hybrid Bonded Thin-Film Lithium Niobate Electro-Optic Mach- Zehnder Modulators. IEEE Photonics Technology Letters, Volume 35 Issue 11. 2023. URL: https://ieeexplore.ieee. org/document/10105559. 22. Yingbo Liu . High-speed electro- optic modulator with group velocity matching on silicon substrate. Front. Bioeng. Biotechnol., 30 June 2025. Sec. Nanobiotechnology Volume 13 – 2025. URL: https://doi.org/10.3389/ fbioe.2025.1626017. 23. 2025 Optical Fiber Communications Conference and Exhibition (OFC). URL: https://ieeexplore.ieee.org/xpl/ conhome/11046334/proceeding. 24. Zhuoyun Li et al. Hybrid Silicon Nitride-Lithium Niobate Electro- Optical Modulator with Wide Optical Bandwidth and High RF Bandwidth Based on Ion-cut Wafer- level Bonding Technology. 2025 Optical Fiber Communications Conference and Exhibition (OFC). URL: https://ieeexplore.ieee.org/ document/11047104. 25. Thin Film Lithium Niobate (TFLN) Modulator Market to Hit USD 3.8 Billion by 2031 – Driven by Optical Communication, Data Centers, and 5G | Valuates Reports. URL: https:// bit.ly/46MhIzz. 26. Koos Ch., Stefan W. et al. Silicon- Organic Hybrid (SOH) Mach- Zehnder Modulators for 100 Gbit/s on-off Keying // Nature Scientific reports. 2018. 8:2598. URL: https://www.researchgate.net/ publication/319524701_Silicon- Organic_Hybrid_SOH_Mach-Zehnder_ Modulators_for_100_Gbits_on-off_ Keying. 27. Koos Ch. et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss // Optics Express. 2020. Vol. 28, No. 17. August 17. URL: https://opg.optica . org/oe/fulltext.cfm?uri=oe-28-17- 24693&id=434266. 28. Organic EO material SEO100. Huang, S. et al. Enhanced temporal stability of a highly efficient guest – host electro-optic polymer through a barrier layer assisted poling process // J. Mater. Chem. 2012. 22. P. 20353–20357. URL: https://pubs.rsc . org/en/content/articlelanding/2012/ jm/c2jm33979j. 29. Jin W. et al. Benzocyclobutene Barrier Layer For Suppressing Conductance in Nonlinear Optical Devices During Electric Field Poling // Appl. Phys. Lett. 2014. 104(24), 243304. URL: https://pubs.aip.org/aip/apl/article- abstract/104/24/243304/385454/ Benzocyclobutene-barrier-layer-for- suppressing?redirectedFrom=fullt ext. 30. OFC 2024, Th4B.6 // Optica. URL: https://opg.optica.org/abstract. cfm?uri=ofc-2024-Th4B.6. 31. OFC 2024, M3K.6 // Optica. URL: https://opg.optica.org/abstract. cfm?uri=OFC-2024-M3K.6. 32. ECOC 2022, Th3B.2 // Optica. URL: https://opg.optica.org/abstract. cfm?uri=eceoc-2022-Th3B.2. 33. CLEO 2023, STh5C.7 // Optica. URL: https://opg.optica.org/abstract. cfm?uri=CLEO_SI-2023-STh5C.7. 34. NLM Photonics to Demonstrate Industry-First Commercial Silicon- Organic Hybrid Modulator // NLM Photonics. March 2025. URL: https:// www.nlmphotonics.com/2025/03/31/ ofc-50-demo-industry-first- commercial-silicon-organic-hybrid- modulator/. 35. NLM Photonics Announces Organic Electro-Optic Material with Record- Breaking Performance // NLM Photonics. June 2025. URL: https:// www.nlmphotonics.com/2025/06/04/ nlm-photonics-announces-organic- electro-optic-material-with-record- breaking-performance/. 36. Yan Wang et al. Organic electro- optic polymer materials and organic-based hybrid electro- optic modulators // Journal of Semiconductors. 2022. Vol. 43, № 10. URL: https://doi.org/10.1088/1674- 4926/43/10/101301. 37. Shuhui Feng et al. Organic Electro- Optic Materials with High Electro- Optic Coefficients and Strong Stability. Molecules, 2024, Vol. 29, № 13. URL: https://doi.org/10.3390/ molecules29133188. 38. Huajun Xu et al. Ultrahigh Performance Cross-Linkable Organic Electro-Optic Material for Hybrid Modulators. Chemistry of Materials, Vol 37, Issue 12, 2025. URL: https:// pubs.acs.org/doi/10.1021/acs. chemmater.5c00027. 39. US Patent № 12187827 «Crosslinkable Nonlinear-Optical Chromophore System», University of Washington, January 7, 2025. URL: https://patents. google.com/patent/US12187827B2/en. 40. NLM to Demonstrate Industry-First Commercial Silicon-Organic Hybrid Modulator on a Multi-Channel PIC // NLM Photonics Press Release, March 31, 2025. URL: https://www. nlmphotonics.com/2025/03/31/ofc- 50-demo-industry-first-commercial- silicon-organic-hybrid-modulator/. 41. NLM Photonics Announces Organic Electro-Optic Material with Record-Breaking Performance // Optica Corporate News, June 5, 2025. URL: https://www.optica . org/about/newsroom/corporate_ member_news/2025/nlm_photonics_ announces_organic_electro-optic_ material_with_record-breaking_ performance/.
RkJQdWJsaXNoZXIy MTQ4NjUy