

НЕФТЕГАЗОВАЯ ПРОМЫШПЕННОСТЬ

Автоматизация железнодорожной эстакады слива-налива нефтепродуктов

Игорь Адаменко

В статье описана автоматизированная система управления наливом нефтепродуктов в железнодорожные цистерны на железнодорожной эстакаде слива-налива нефтепродуктов ООО «Ильский НПЗ» (компания-партнёр инвестиционно-инжинирингового холдинга КНГК-Групп). В ней отражены актуальность системы, её назначение и функции. Представлена архитектура системы, раскрыты применённые программные и технические средства, приведено подробное описание АСУ ТП, а также процесс функционирования на примере процесса налива мазута, описаны результаты внедрения.

Введение

В 2011 году в России была принята программа по модернизации нефтеперерабатывающих мощностей и вводу новых мощностей вторичной переработки нефти со сроком реализации до 2020 года.

Выполнение данной программы предполагает качественный скачок в развитии отрасли, поэтому нефтяные предприятия последовательно выполняют взятые на себя обязательства. Не стало исключением и ООО «Ильский НПЗ», находящееся в пгт Ильский Северского района Краснодарского края.

Таким образом, в 2012 году стартовали работы по модернизации ООО «Иль-

ский НПЗ». Одним из результатов реконструкции является строительство двухсторонней эстакады слива-налива нефтепродуктов на 60 вагонов-цистерн, предназначенной для слива нефти и налива мазута, бензина, дизельного топлива. Именно она и стала объектом автоматизации ООО «НОИНТ».

В ходе автоматизации железнодорожной эстакады слива-налива нефтепродуктов были выполнены следующие работы:

- проектирование раздела «Автоматизация производства» с учётом внедрения противоаварийной и противопожарной защиты;
- подбор, поставка и монтаж оборудования:

- разработка прикладного программного обеспечения согласно требованиям заказчика;
- пусконаладочные работы;
- обучение персонала завода.

Назначение и **Ф**УНКЦИИ системы

Разработанная автоматизированная система управления предназначена для автоматического и оперативного управления оборудованием на железнодорожной эстакаде слива-налива нефтепродуктов предприятия ООО «Ильский НПЗ» (рис. 1).

В соответствии с требованиями заказчика система выполняет следующие функции:

- автоматизированное управление процессами слива-налива нефтепродуктов согласно заданным алгоритмам работы;
- дистанционное управление оборудованием эстакалы;
- контроль и точный учёт данных;
- получение оперативной информации о работе агрегатов;
- автоматическая передача данных в систему «1С: Бухгалтерия»;
- возможность управления процессами слива-налива в ручном режиме;
- автоматическая противоаварийная защита;
- автоматическая противопожарная зашита.

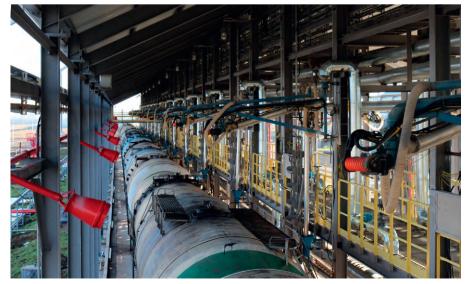


Рис. 1. Железнодорожная эстакада слива-налива нефтепродуктов 000 «Ильский НПЗ»

APXITEKTYPA CUCTEMЫ

Архитектура автоматизированной системы управления железнодорожной эстакады представлена на рис. 2, она включает три подсистемы: ATX — автоматизация техпроцесса, ПАЗ — противоаварийная защита, АПТ — автоматическое пожаротушение.

Каждая подсистема состоит из трёх уровней: полевого, нижнего и верхнего. Полевой уровень представлен контрольно-измерительными приборами и автоматикой (датчики предельного уровня, расходомеры, датчики положения, датчики контроля нижнего концентрационного предела распространения пламени).

Нижний уровень представляет собой комплекс микропроцессорной техники, состоящей из программируемых логических контроллеров (ПЛК), модулей ввода/вывода сигналов и промежуточных звеньев, согласующих работу полевых устройств с верхним уровнем. ПЛК автоматически выполняет все необходимые действия по обеспечению дистанционного управления технологическим оборудованием системы.

Верхний уровень, важной составляющей которого является человеко-машинный интерфейс, представлен SCA-DA-системой. Основные функции, выполняемые на верхнем уровне:

- контроль периферии;
- управление исполнительными устройствами;
- регистрация информации;
- хранение информации.

В целях оптимизации построения системы разработчиками было принято решение разместить автоматизированные рабочие места в помещении операторной, а контроллеры — непосредственно на эстакаде в специальных взрывозащищённых шкафах (рис. 3). Тем самым связь устройств и агрегатов с контроллером обеспечивается минимальной длиной кабелей.

Далее детально рассматривается подсистема ATX, поскольку она разрабатывалась для конкретного объекта. Реализация подсистем ПАЗ и ATП регламентируется руководящими документами Ростехнадзора и стандартизирована, поэтому их описание не приводится.

Используемые технические и программные средства

Подсистема ATX (ACУ ТП) реализована с использованием трёх ПЛК SIE-MENS серии SIMATIC S7-300. Получе-

Рис. 2. Архитектура автоматизированной системы управления железнодорожной эстакады

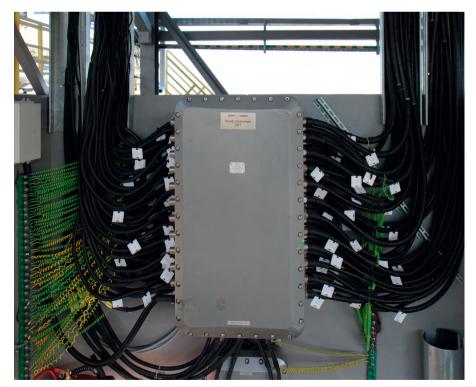


Рис. 3. Размещение контроллеров на эстакаде во взрывозащищённых шкафах

ние информации о текущем состоянии оборудования и управление им осуществляется через модули ввода-вывода, входящие в состав контроллера. Для наблюдения за ходом технологического процесса и оперативного управления

им в состав подсистемы входит компьютер с соответствующим программным обеспечением — автоматизированное рабочее место оператора (APM оператора). Кроме функций наблюдения и оперативного управления технологиче-

71

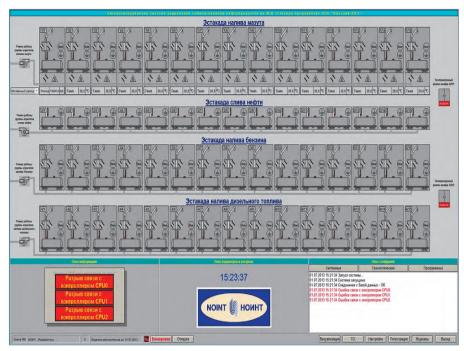


Рис. 4. Главная мнемосхема АРМ оператора

Рис. 5. Окно управления состоянием устройств и агрегатов

ским процессом, APM оператора позволяет собирать, хранить данные о ходе технологического процесса в архиве и производить анализ на основе этих данных.

Программное обеспечение (ПО) ПЛК разработано в среде SIMATIC STEP 7. Оно обеспечивает приём команд, поступающих с APM оператора, управляет оборудованием в соответствии с поступающими командами и состоянием датчиков, осуществляет

контроль за состоянием технологического оборудования и ходом технологического процесса. Программное обеспечение компьютера включает операционную систему Windows 7 Professional, SQL-сервер (для архивов) и специальное ПО (рис. 4), разработанное в среде SIMATIC WinCC V7.0. Последнее обеспечивает наблюдение за состоянием оборудования, датчиков и аварийных кнопок, оперативное управление оборудованием, сбор, хранение и ана-

Уі	Окно параметров правление стояком слива/на		
Наименование		Состояние 3	Ваданная доза нали
Стояк налива мазута АСН 1/1		Не определено	213,00
Управл	ение	Показания рас	ходомера
Команда на запуск/останов	Задание дозы налива	Сумматор массы	100,00
Запустить налив	0.00	Сумматор объема	1500,00
Остановить налив	0,00	Текущая плотность	22,00
Остановить налив	Установить	Текущая температура	36,60
Снять аварию	дозу налива	Текущий объемный расх	юд 1,00

Рис. 6. Окно параметров и настроек для управления стояками налива мазута

лиз полученных данных, изменение параметров технологического процесса, настройку оборудования системы.

Описание АСУ ТП

Программируемый логический контроллер автоматически выполняет все необходимые действия по обеспечению дистанционного управления технологическим оборудованием системы. В функции ПЛК входит:

- сбор информации о текущем состоянии всех устройств и агрегатов системы и режиме управления ими;
- формирование информационных сообщений обо всех изменениях в системе, полученных командах управления и результатах их выполнения;
- передача полученной информации, диагностических и информационных сообщений на APM оператора для их отображения, записи в журналы и организации диалога с оператором;
- автоматическое управление устройствами и агрегатами по заданным алгоритмам работы;
- приём команд управления с APM оператора.

АРМ оператора: запуск ПО АРМ оператора осуществляется автоматически после включения или перезагрузки компьютера. Сразу после запуска устанавливается связь с ПЛК и начинается сохранение данных, полученных с ПЛК, в архиве. На АРМ оператора реализованы следующие функции:

• Управление устройствами и агрегатами позволяет менять состояние заданного устройства, при этом в окне параметров и настроек отобразится панель управления выбранным устройством. Содержимое этой панели (рис. 5) будет зависеть от типа устройства, а в окне визуализации рамка вокруг выбранного устройства начнёт мигать. В зависимости от типа устройства, выполняемых им функций и аппаратной реализации некоторые поля и органы управления могут не отображаться или быть недоступными (отображение серым цветом означает, что выполнение соответствующих операций для данного устройства или агрегата невозможно). Надписи на кнопках управления состоянием устройства также изменяются. В верхней части окна в разделе «Текущие параметры» отображаются полное наименование выбранного устройства, установленный режим управления и его текущее состояние. В случае обнаружения системой аварии какого-

72

www.cta.ru CTA 2/2015

Новые технологии надёжности

Волоконно-оптические измерительные системы

OBSGW-100 — датчики для контроля напряжённодеформированного состояния объектов

OBDI — датчики для измерения структурной деформации или относительного смещения

OBLG — экстензометры с измерительной базой до 1,5 м для любых поверхностей

OBTI — инклинометры для высокоточных измерений угла наклона

Преимущества перед электрической системой

- Нечувствительность к электромагнитным помехам
- Устойчивость к коррозии
- Взрывобезопасные системы (применение светового сигнала вместо электрического)
- Использование до 15 датчиков в одной измерительной линии суммарной длиной до 4 км

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР ПРОДУКЦИИ SCAIME

МОСКВА С.-ПЕТЕРБУРГ АЛМА-АТА ВОЛГОГРАД **ЕКАТЕРИНБУРГ** КИЕВ КРАСНОДАР Н. НОВГОРОД НОВОСИБИРСК OMCK CAMAPA ЧЕЛЯБИНСК

Ten.: (495) 234-0636 • Φakc: (495) 234-0640 • info@prosoft.ru • www.prosoft.ru

Ten.: (812) 448-0444 • Φakc: (812) 448-0339 • info@spb.prosoft.ru • www.prosoft.ru

Ten.: (877) 329-5121 • sales@kz.prosoft.ru • www.prosoft.kz.com

Ten.: (8442) 260-048 • volgograd@prosoft.ru • www.prosoft.ru

Ten.: (8442) 260-048 • volgograd@prosoft.ru • www.prosoft.ru

Ten.: (843) 291-7555 • Φakc: (843) 310-0106 • info@prosoft.ru • www.prosoft.ru

Ten.: (843) 291-7555 • Φakc: (843) 570-4315 • info@kzn.prosoft.ru • www.prosoft.ru

Ten.: (843) 201-7555 • Φakc: (843) 570-4315 • info@kzn.prosoft.ru • www.prosoft.ru

Ten.: (841) 224-9513 • Φakc: (861) 224-9513 • krasnodar@prosoft.ru • www.prosoft.ru

Ten.: (831) 215-4084 • Φakc: (831) 215-4084 • n.novgorod@prosoft.ru • www.prosoft.ru

Ten.: (383) 202-0960; 335-7001/7002 • Φakc: (383) 230-2729 • info@nsk.prosoft.ru

Ten.: (846) 277-9166 • Φakc: (846) 277-9165 • info@samara.prosoft.ru • www.prosoft.ru

Ten.: (847) 292-5216/5217 • Φakc: (347) 292-5218 • info@samara.prosoft.ru • www.prosoft.ru

Ten.: (351) 239-9360 • chelyabinsk@prosoft.ru • www.prosoft.ru

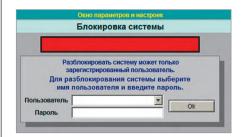


Рис. 7. Блокировка системы

либо устройства на экран выводится причина её возникновения. Если система обнаруживает аварию устройства или ошибки в его работе, то после устранения неисправности для восстановления нормального функционирования устройства используется кнопка «Сброс аварии». С помощью кнопок «Дистанционный», «Местный» и «Ремонтный» устройство переводится в соответствующий режим. Если для выбранного устройства включён ремонтный режим, то вместо кнопки «Ремонтный» отображается кнопка «Рабочий», служащая для его отключения. На рис. 6 показано окно параметров и настроек стояков налива мазута, где приводятся все текущие показатели расходомера по выбранному стояку налива, а также задаётся доза налива.

- Управление режимом технического обслуживания (ТО) — смена режима обслуживания разрешается только пользователям, имеющим соответствующие права. Включение и отключение ремонтного режима осуществляется в окне управления техническим обслуживанием.
- *Елокировка АРМ оператора* позволяет в случае временного отсутствия персонала заблокировать доступ к системе. Перемещение мыши ограничивается областью окна, представленного на рис. 7. Таким образом становятся недоступными все органы управления системой.
- Журнал событий: при работе системы автоматически формируются сообщения о возникающих событиях, которые сохраняются в журнале событий. В нём фиксируются все события, произошедшие в системе управления (информационные, аварийные, команды управления). Этот журнал позволяет анализировать работу системы и действия персонала. Окно содержит три поля: для задания условий отображения, отображения трендов и отображения событий. При первоначальном запуске поле отображения событий скрыто.

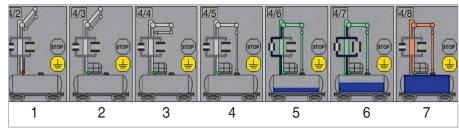


Рис. 8. Алгоритм работы системы в процессе налива мазута

Алгоритм работы системы на примере процесса налива мазута

Алгоритм работы показан на рис. 8 и состоит из следующих шагов:

- 1) оператор на железнодорожной эстакаде производит заземление железнодорожной цистерны (1);
- 2) приводит в рабочее состояние трап, наконечник и консоль стояка налива (2, 3, 4);
- оператор налива по APM контролирует состояние технологического оборудования, задаёт дозу налива и запускает налив для каждого стояка отдельно;
- 4) после подтверждения включения насосов открывается клапан малого расхода (5);
- 5) по истечении времени налива на малом расходе открывается клапан большого расхода (6);
- 6) за 500 кг до завершения дозы налива закрывается клапан большого расхода, количество продукта контролируется с помощью датчика расхода (7);
- 7) при получении сигнала «Максимальный уровень» завершается налив.

В процессе налива мазута осуществляется контроль состояния технологического оборудования:

- контроль положения запорной арматуры,
- контроль заземления железнодорожной цистерны,
- контроль положения устройства верхнего налива (УВН),
- а также проверяется готовность персонала к началу налива.

Для оперативного и безопасного процесса налива в системе предусмотрено:

- контроль расхода мазута (осуществляется расходомером);
- контроль положения (выполняется индуктивными бесконтактными датчиками приближения);
- противоаварийная защита (осуществляется датчиком предельного уровня).

В процессе налива предусмотрено дистанционное управление насосным агрегатом подачи продукта и технологической запорной арматурой.

Результаты внедрения

До реконструкции на предприятии в ручном режиме функционировала небольшая эстакада из 14 стояков сливаналива

В рамках реконструкции была построена новая полностью автоматизированная эстакада на 60 стояков налива.

Система автоматизации была запущена специалистами ООО «НОИНТ» в октябре 2013 года и сразу же позволила добиться следующих изменений:

- увеличение скорости слива-налива нефтепродуктов: до реконструкции налив семи вагонов производился за 1 час 10 минут, сейчас благодаря внедрению системы время налива 15 вагонов составляет 1 час 50 минут; также за счёт увеличения числа вагонов произошло сокращение объёма маневровых работ;
- сокращение количества обслуживаюшего персонала на единицу эстакады: ранее эстакаду из 14 стояков сливаналива обслуживали 7 товарных операторов, на данный момент эстакада из 60 стояков обслуживается десятью операторами;
- повышение точности учёта данных: расходомеры фирмы SIEMENS позволяют осуществлять коммерческий учёт налива нефтепродуктов без использования железнодорожных весов:
- автоматическая передача данных в систему «1С: Бухгалтерия».

Также была реализована современная система противоаварийной и противопожарной защиты. Весь комплекс полностью соответствует нормам и требованиям промышленной безопасности (проведена проверка проекта и выполненных работ органами Ростехнадзора).

Помимо преимуществ тотального автоматизированного контроля за всеми процессами на объекте, операторы завода отмечают удобный и наглядный интерфейс SCADA-системы. •

E-mail: dir noint@mail.ru

Линейка встраиваемых ПК и другого оборудования для применения в опасных зонах

- Комплексное решение для систем АСУ, включающее промышленные ПК, коммутаторы и маршрутизаторы для кабельных и беспроводных сетей, системы сбора данных ADAM и средства отображения информации (мониторы)
- Удалённая диагностика и управление, возможность удалённого видеонаблюдения благодаря поддержке ІР-видеокамер
- Оборудование сертифицировано по стандарту NEC для применения в зонах Class 1 Division 2
- Отсутствие кабельной проводки внутри изделий снижает риск возникновения искры

EKI-7xxx - EKI-13xx

линейка управляемых Ethernet-коммутаторов и серверов последовательных интерфейсов

UNO-11xx

встраиваемые компьютеры для монтажа на DIN-рейку на базе процессоров

FPM-8151H

монитор 15", IP65 резистивный сенсорный экран, диапазон рабочих температур -20...+60°С

ADAM-4xxx

модули ввода-вывода для интерфейсов RS-232 и RS-485

Enabling an Intelligent Planet

Advantech Co., LTD.

Представительство в России Тел.: +7 (495) 644-0364, 8 (800) 555-0150 (бесплатно по России) info@advantech.ru www.advantech.ru

ОФИЦИАЛЬНЫЙ ДИСТРИБЬЮТОР ПРОДУКЦИИ ADVANTECH

МОСКВА
С.-ПЕТЕРБУРГ
АЛМА-АТА
ВОЛГОГРАД
ЕКАТЕРИНБУРГ
КАЗАНЬ
К ИВВ
Н. (841) 248-0434 • Факс: (8495) 234-0640 • info@prosoft.ru • www.prosoft.ru
Тел.: (812) 448-0444 • Факс: (812) 448-0339 • info@spb.prosoft.ru • www.prosoft.ru
Тел.: (8727) 329-5121; 320-1959 • sales@kz.prosoft.ru • www.prosoft.ru
Тел.: (8442) 260-048 • volgograd@prosoft.ru • www.prosoft.ru
Tел.: (8442) 260-048 • volgograd@prosoft.ru • www.prosoft.ru

EKATEPUHБУРГ
КАЗАНЬ
Тел.: (843) 291-7555 • Факс: (843) 310-0106 • info@prosoft.ru • www.prosoft.ru

Tел.: 438 (044) 206-2343; 206-2478 • info@prosoft.ru • www.prosoft.ru

Tел.: 438 (044) 206-2343; 206-2478 • info@prosoft.ru • www.prosoft.ru

Tел.: (861) 224-9513 • Факс: (861) 224-9513 • krasnodar@prosoft.ru • www.prosoft.ru

Tел.: (381) 215-4084 • Факс: (831) 215-4084 • n.novgorod@prosoft.ru • www.prosoft.ru

Tел.: (3812) 286-521 • Факс: (3812) 315-294 • omsk@prosoft.ru • www.prosoft.ru

Tел.: (3812) 286-521 • Факс: (346) 277-9165 • info@smara.prosoft.ru • www.prosoft.ru

Tел.: (347) 292-5216/5217 • Факс: (347) 292-5218 • info@ufa.prosoft.ru • www.prosoft.ru

Tел.: (351) 239-9360 • chelyabinsk@prosoft.ru • www.prosoft.ru