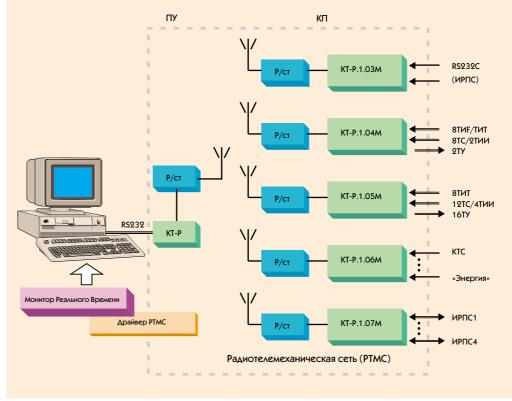
РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

РАДИОТЕЛЕМЕХАНИЧЕСКИЕ СИСТЕМЫ НА БАЗЕ контроллеров КТ-Р

Виктор Сумительнов

Описана структура радиотелемеханической системы, создаваемой средствами комплекса «КОРАТ»


уществует большой класс пространственно распределенных объектов, автоматизация которых возможна

только по технологии создания телемеханических систем. При этом в условиях, когда прокладка физических линий связи стоит очень дорого, а доступ к телефонным линиям связи не всегда имеется, актуально использование радиоканалов связи. Сложность создания радиотелемеханических систем обусловлена необходимостью обеспечения требуемой достоверности передачи телемеханических сообщений и допустимого времени реакции на аварийные сигналы в условиях открытости радиоканала для различного вида метеорологических и индустриальных помех, а также для сторонних радиотелефонных переговоров.

В КТЦ «Автоматизация и метрология» разработан комплекс средств радиотелемеханики «КОРАТ», обеспечивающий создание радиотелемеханических систем с использованием

диапазонах 33...58 МГц (ЛЕН-В, ЛЕН-Б, М216) и 146...174 МГц (МАЯК, ЛЕН-Б160, ЗАРЯ-АТ, М120, GM-300), в которых выделяются рабочие частоты для про-

мышленных предприятий, коммунальных служб и электрических сетей. Комплекс «КОРАТ» является средством измерения (№ 15137-96 Государственного

радиостанций, работающих в Рис. 1. Структура радиотелемеханической системы

70

РАЗРАБОТКИ

РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

реестра) и выпускается по техническим условиям, согласованным ГОССВЯЗЬ-НАДЗОРом РФ.

Структура радиотелемеханической системы, создаваемой средствами комплекса, представлена на рис. 1.

Основой системы является радиотелемеханическая сеть (РТМС), состоящая из контроллеров телемеханических (КТ-Р) и радиостанций (Р/ст). Каждая РТМС имеет системный адрес, отличающий ее от аналогичных, работающих на той же частоте. Конфигурация сети многоточечная радиальная: пункт управления (ПУ) может обслуживать до 128 контролируемых пунктов (КП), причем одновременно ПУ может принимать сообщения только от одного КП. Контроллеры КТ-Р обеспечивают функционирование РТМС в соответствии со стандартом на устройства и системы телемеханики МЭК 870-5-1, формат сообщений соответствует FT 3, а класс диалоговой процедуры - S2 (достоверный прием подтверждается пере-

Рис. 2. Контроллеры терминальные

дачей квитирующего сообщения). Запуск передач телемеханических сообщений в РТМС осуществляется либо по инициативе ПУ (программный запрос), либо по инициативе КП (спорадичес-

кие передачи «по событию» или по временной уставке).

РТМС подключается к компьютеру ПУ через интерфейс RS-232C. Программное обеспечение радиотелемеханической системы представляет собой совокупность системных и прикладных программных средств. Системные программные средства в минимальном комплекте включают в себя монитор реального времени ТРЕЙС МОУД и драйвер РТМС, а в полном — комплектуются графической системой разработки АСУ ТП типа ТРЕЙС МОУД. Прикладные программные средства разрабатываются по индивидуальным требованиям заказчиков. Техническое решение ПУ, как правило, предопределяется имеющимся у заказчика компьютером. В то же время наш опыт проектирования крупных систем позволяет рекомендовать построение ПУ на базе МісгоРС, работающего в локальной сети с диспетчерскими и другими компьютерами. Такой подход особенно перспективен при создании радиотелемеханических систем коммерческого учета. Он обеспечивает высокую защищенность измерительных данных при обработке и хранении, а также позволяет исключить несанкционированный доступ к описанию базы измерительных каналов.

На КП используются КТ-Р двух типов: концентрирующие, которые применяются на объектах с большим объемом телемеханизации для подключения к РТМС различных устройств сбора данных, управления и регулирования, и терминальные, непосредственно предназначенные для телемеханизации малоинформационных объектов.

Среди концентрирующих можно назвать КТ-Р.1.07М, обеспечивающий подключение до 4 внешних устройств

Таблица 1. Характеристики терминальных контроллеров

Наименования показателей	Контроллеры	
	1.04M	1.05M
1. Ввод дискретных сигналов (ТС):		
• КОЛИЧЕСТВО КАНАЛОВ	8	18
• напряжение изоляции оптронной развязки	100 B	1500 B
• напряжение питания внешнего источника	12/24/36 B	12/24/36 B
2. Счет количества импульсов (ТИИ):		
• КОЛИЧЕСТВО КАНАЛОВ	2	4
• амплитуда импульсов	12 B	12 B
• частота следования импульсов не более	1 Гц	1 Гц
• минимальная длительность импульса	20 MC	20 MC
• разрядность сумматора, бит	16	16
• сигнализация переполнения сумматора	активная	активная
3. Выводы дискретных сигналов (ТУ):		
• КОЛИЧЕСТВО КАНАЛОВ	2	16
• коммутируемая мощность «сухого» контакта	9 Вт	9 Вт
• длительность импульса фиксированная	1-10 c	1-10 c
4. Ввод аналоговых частотных сигналов(ТИF)		
• КОЛИЧЕСТВО КАНАЛОВ *	2	2
• диапазон	0,1-4 кГц	0,1-4 кГц
• амплитуда импульса	10 MA	10 MA
• основная приведенная погрешность	0,1 %	0,1 %
5. Ввод аналоговых токовых сигналов (ТИТ)		
с использованием блока 8-канального		
преобразования типа «ток-частота» БП-И.2.09:		
• ДИАПАЗОНЫ ТОКОВЫХ СИГНАЛОВ	0-5; 0-20 MA	0-5; 0-20 MA
• основная приведенная погрешность	0,4%	0,4%
• количество подключаемых БП-И.2.09	2	2
* Количество частотных каналов по специальному заказ	ву может быть увеличен	но до 6.

РАЗРАБОТКИ

РАСПРЕДЕЛЕННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Рис. 3. Контроллеры специализированные

по интерфейсу типа «токовая петля» (ИРПС) с полудуплексной передачей сообщений по формату FT 1.2 (МЭК 870-5-1); КТ-Р.1.06М, концентрирующий сообщения, симплексно передаваемые измерительными устройствами энергоучета из состава комплекса «Энергия» (ПО «Старт», г. Пенза); КТ-Р.1.03М, который имеет два канала передачи данных типа RS-232C и/или ИРПС.

В новых проектах систем радиотелемеханики предполагается активное использование контроллера КТ-Р.1.03М. Он выполнен на базе однокристальной микроЭВМ типа 80С32, имеет по 32 кбайт ППЗУ и энергонезависимого ОЗУ, микропроцессорный супервизор, гальваническую развязку цепей RS-232C. Контроллер поддерживает передачу данных по FT 1.2 или Modbus. В настоящее время разрабатывается проект, в котором сигналы одного из каналов КТ-Р.1.03М преобразуются в соответствии с требованиями магистрального интерфейса RS-485, в результате чего обеспечивается возможность построения локального телекомплекса из функциональных модулей ADAM серии 4000 фирмы Advantech и контроллеров типа MicroDAC фирмы Grayhill.

Терминальные контроллеры КТ-Р.1.04М и КТ-Р.1.05М имеют характеристики, приведенные в таблице 1.

Известно, что при создании радиотелемеханической системы необходимо получить в территориальном органе

ГОССВЯЗЬНАДЗОРа либо выделенную частоту для организации радиоканала, либо разрешение на развитие имеющегося радиотелефонного канала. Очевидно, что с каждым годом получение выделенной частоты только для переда-

чи сигналов радиотелемеханики будет все более проблематичным, и поэтому при разработке «КОРАТ» особое значение уделено обеспечению возможности комплексного использования одной частоты как для передачи телемеханических сообщений, так и для организации аварийно-диспетчерской связи. В Московской области при коллективном использовании одной рабочей частоты многими родственными предприятиями (например, всем предприятиям «Водоканал» выделена частота 42150 кГц, а газовым хозяйствам – 49950 кГц) такой подход в настоящее время является единственно возможным.

С 1993 г. поставлено более 30 комплексов для предприятий водо-, тепло-, электро- и газораспределительных сетей. Полностью или базовой частью введено 15 радиотелемеханических систем, некоторые из них работают уже более 3 лет. Накопленный опыт позволяет рекомендовать активное использование радиотелемеханических систем при автоматизации территориальнораспределенных объектов.

Рис. 4. Оборудование пункта управления

72